

Welcome to RPLCD’s documentation!

About

RPLCD is a Python 2/3 Raspberry PI Character LCD library for the Hitachi HD44780
controller. It supports both GPIO (parallel) mode as well as boards with an I²C
port expander (e.g. the PCF8574 or the MCP23008).

This library is inspired by Adafruit Industries’ CharLCD [https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code/tree/master/Adafruit_CharLCD] library as well as by
Arduino’s LiquidCrystal [http://arduino.cc/en/Reference/LiquidCrystal] library.

For GPIO mode, no external dependencies (except the RPi.GPIO library, which
comes preinstalled on Raspbian) are needed to use this library. If you want to
control LCDs via I²C, then you also need the python-smbus library.

Features

Already implemented

	Simple to use API

	Support for both 4 bit and 8 bit modes

	Support for both parallel (GPIO) and I²C connection

	Support for custom characters

	Support for backlight control circuits

	Built-in support for A00 and A02 character tables

	Python 2/3 compatible

	Caching: Only write characters if they changed

	No external dependencies (except RPi.GPIO, and python-smbus if you need
I²C support)

Wishlist

These things may get implemented in the future, depending on my free time and
motivation:

	MicroPython port

Supported I²C Port Expanders

	PCF8574 (used by a lot of I²C LCD adapters on Ali Express)

	MCP23008 (used in Adafruit I²C LCD backpack)

	MCP23017

Contents

	Installation
	From PyPI

	Manual Installation

	Getting Started
	Wiring

	Initializing the LCD

	Usage
	Writing To Display

	Clearing the Display

	Character Maps

	Creating Custom Characters

	Changing the Cursor Appearance

	Backlight Control

	Automatic Line Breaks

	Scrolling Text

	Raw Commands

	API
	CharLCD (I²C)

	CharLCD (GPIO)

Indices and tables

	Index

	Module Index

	Search Page

Installation

From PyPI

You can install RPLCD directly from PyPI [https://pypi.python.org/pypi/RPLCD/] using pip:

$ sudo pip install RPLCD

If you want to use I²C, you also need smbus:

$ sudo apt-get install python-smbus

Manual Installation

You can also install the library manually without pip. Either just copy the
scripts to your working directory and import them, or download the repository
and run python setup.py install to install it into your Python package
directory.

Getting Started

After you’ve installed RPLCD, you need two more steps to
get started: Correct wiring and importing the library.

Wiring

Via I²C

The wiring is much simpler if you have a LCD module with I²C support. These
boards usually have a “backpack board” and look similar to this:

[image: LCD with I²C port expander]
The board on this photo has a PCF8574 port expander chip on it. There are also
boards with other chips, e.g. the Adafruit I²C/SPI LCD Backpack which uses an
MCP23008 port expander.

First, connect the pins on the right with the Raspberry Pi:

	GND: Pin 6 (GND)

	VCC: Pin 4 (5V)

	SDA: Pin 3 (SDA)

	SCL: Pin 5 (SCL)

To make things clearer, here’s a little visualization:

[image: LCD wiring (I²C)]

Via GPIO

If you don’t have an I²C version of the board, you can also connect the LCD
Pins directly to the GPIO header of the Raspberry Pi.

If you don’t know how to wire up the LCD to the Raspberry Pi, you could use this
example wiring configuration in 4 bit mode (BOARD numbering scheme):

	RS: 15

	RW: 18

	E: 16

	Data 4-7: 21, 22, 23, 24

To make things clearer, here’s a little visualization:

[image: LCD wiring (GPIO)]
After wiring up the data pins, you have to connect the voltage input for
controller and backlight, and set up the contrast circuit. As there are some
differences regarding the hardware between different modules, please refer to
the Adafruit tutorial [https://learn.adafruit.com/character-lcds/wiring-a-character-lcd] to learn
how to wire up these circuits.

Initializing the LCD

Setup: I²C

First, import the RPLCD library from your Python script.

from RPLCD.i2c import CharLCD

Then create a new instance of the CharLCD class. For that,
you need to know the address of your LCD. You can find it on the command line
using the sudo i2cdetect 1 command (or sudo i2cdetect 0 on the original
Raspberry Pi). In my case the address of the display was 0x27. You also need
to provide the name of the I²C port expander that your board uses. It should be
written on the microchip that’s soldered on to your board. Supported port
expanders are the PCF8574, the MCP23008 and the MCP23017.

lcd = CharLCD('PCF8574', 0x27)

If you want to customize the way the LCD is instantiated (e.g. by changing the
number of columns and rows on your display or the I²C port), you can change the
corresponding parameters. Example:

lcd = CharLCD(i2c_expander='PCF8574', address=0x27, port=1,
 cols=20, rows=4, dotsize=8,
 charmap='A02',
 auto_linebreaks=True,
 backlight_enabled=True)

Setup: GPIO

First, import the RPLCD library from your Python script.

from RPLCD.gpio import CharLCD

Then create a new instance of the CharLCD class. If you
have a 20x4 LCD, you must at least specify the numbering mode and the pins you
used:

lcd = CharLCD(pin_rs=15, pin_rw=18, pin_e=16, pins_data=[21, 22, 23, 24],
 numbering_mode=GPIO.BOARD)

If you want to customize the way the LCD is instantiated (e.g. by changing the
pin configuration or the number of columns and rows on your display), you can
change the corresponding parameters. Here’s a full example:

from RPi import GPIO

lcd = CharLCD(pin_rs=15, pin_rw=18, pin_e=16, pins_data=[21, 22, 23, 24],
 numbering_mode=GPIO.BOARD,
 cols=20, rows=4, dotsize=8,
 charmap='A02',
 auto_linebreaks=True)

Writing Data

Now you can write a string to the LCD:

lcd.write_string('Hello world')

To clean the display, use the clear() method:

lcd.clear()

You can control line breaks with the newline (\n, moves down 1 line) and
carriage return (\r, moves to beginning of line) characters.

lcd.write_string('Hello\r\n World!')

And you can also set the cursor position directly:

lcd.cursor_pos = (2, 0)

Usage

Make sure to read the Getting Started section if you haven’t done so yet.

Writing To Display

Regular text can be written to the CharLCD instance using
the write_string() method. It accepts unicode strings
(str in Python 3, unicode in Python 2).

The cursor position can be set by assigning a (row, col) tuple to
cursor_pos. It can be reset to the starting position
with home().

Line feed characters (\n) move down one line and carriage returns (\r)
move to the beginning of the current line.

lcd.write_string('Raspberry Pi HD44780')
lcd.cursor_pos = (2, 0)
lcd.write_string('https://github.com/\n\rdbrgn/RPLCD')

[image: Photo of 20x4 LCD in action]
You can also use the convenience functions cr(), lf() and crlf() to
write line feed (\n) or carriage return (\r) characters to the display.

lcd.write_string('Hello')
lcd.crlf()
lcd.write_string('world!')

After your script has finished, you may want to close the connection and
optionally clear the screen with the close() method.

lcd.close(clear=True)

When using a GPIO based LCD, this will reset the GPIO configuration. Note that
doing this without clearing can lead to undesired effects on the LCD, because
the GPIO pins are floating (not configured as input or output anymore).

Clearing the Display

You can clear the display by using the clear() method. It
will overwrite the data with blank characters and reset the cursor position.

Alternatively, if you want to hide all characters but keep the data in the LCD
memory, set the display_enabled property to False.

Character Maps

RPLCD supports the two most commonly used character maps for HD44780 style
displays: A00 and A02. You can find them on pages 17 and 18 of the datasheet [https://www.sparkfun.com/datasheets/LCD/HD44780.pdf].

The default character map is A02. If you find that some of the characters
you are writing to the display turn out wrong, then try using the A00
character map:

lcd = CharLCD(..., charmap='A00')

As a rule of thumb, if your display can show Japanese characters, it uses
A00, otherwise A02. To show the entire character map on your LCD, you
can use the show_charmap target of the lcdtest.py script.

Should you run into the situation that your character map does not seem to match
either the A00 or the A02 tables, please open an issue [https://github.com/dbrgn/RPLCD/issues] on Github.

The same thing counts if you have a character that should be supported by your
character map, but which doesn’t get written correctly to the display. Let me
know by opening an issue [https://github.com/dbrgn/RPLCD/issues]!

In case you need a character that is not included in the default device
character map, there is a possibility to create custom characters and write them
into the HD44780 CGRAM. For more information, see the Creating Custom Characters
section.

Creating Custom Characters

The HD44780 supports up to 8 user created characters. A character is defined by
a 8x5 bitmap. The bitmap should be a tuple of 8 numbers, each representing a 5
pixel row. Each character is written to a specific location in CGRAM (numbers
0-7).

>>> lcd = CharLCD(...)
>>> smiley = (
... 0b00000,
... 0b01010,
... 0b01010,
... 0b00000,
... 0b10001,
... 0b10001,
... 0b01110,
... 0b00000,
...)
>>> lcd.create_char(0, smiley)

To actually show a stored character on the display, you can use hex escape codes
with the location number you specified previously. For example, to write the
character at location 3:

>>> lcd.write_string('\x03')

The escape code can also be embedded in a longer string:

>>> lcd.write_string('Hello there \x03')

The following tool can help you to create your custom characters:
https://omerk.github.io/lcdchargen/

Changing the Cursor Appearance

The cursor appearance can be changed by setting the
cursor_mode property to one of the following three
values:

	hide – No cursor will be displayed

	line – The cursor will be indicated with an underline

	blink – The cursor will be indicated with a blinking square

Backlight Control

I²C

If you’re using an LCD connected through the I²C bus, you can directly turn on
the backlight using the boolean backlight_enabled property.

GPIO

By setting the pin_backlight parameter in the CharLCD
constructor, you can control a backlight circuit.

First of all, you need to build an external circuit to control the backlight,
most LCD modules don’t support it directly. You could do this for example by
using a transistor and a pull-up resistor. Then connect the transistor to a GPIO
pin and configure that pin using the pin_backlight parameter in the
constructor. If you use an active high circuit instead of active low, you can
change that behavior by setting the backlight_mode to either
active_high or active_low. Now you can toggle the
backlight_enabled property to turn the backlight on
and off.

Automatic Line Breaks

By default, RPLCD tries to automatically insert line breaks where appropriate
to achieve (hopefully) intuitive line wrapping.

Part of these rules is that manual linebreaks (either \r\n or \n\r) that
immediately follow an automatically issued line break are ignored.

If you want more control over line breaks, you can disable the automatic system
by setting the auto_linebreaks parameter of the CharLCD constructor to
False.

lcd = CharLCD(..., auto_linebreaks=False)

Scrolling Text

I wrote a blogpost on how to implement scrolling text:
https://blog.dbrgn.ch/2014/4/20/scrolling-text-with-rplcd/

To see the result, go to https://www.youtube.com/watch?v=49RkQeiVTGU.

Raw Commands

You can send raw commands to the LCD with command() and
write a raw byte to the LCD with write(). For more
information, please refer to the Hitachi HD44780 datasheet.

API

CharLCD (I²C)

The main class for controlling I²C connected LCDs.

	
class RPLCD.i2c.CharLCD(i2c_expander, address, expander_params=None, port=1, cols=20, rows=4, dotsize=8, charmap='A02', auto_linebreaks=True, backlight_enabled=True)

	CharLCD via PCF8574 I2C port expander:

Pin mapping:

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
D7 | D6 | D5 | D4 | BL | EN | RW | RS

CharLCD via MCP23008 and MCP23017 I2C port expanders:

Adafruit I2C/SPI LCD Backback is supported.

Warning: You might need a level shifter (that supports i2c)
between the SCL/SDA connections on the MCP chip / backpack and the Raspberry Pi.
Or you might damage the Pi and possibly any other 3.3V i2c devices
connected on the i2c bus. Or cause reliability issues. The SCL/SDA are rated 0.7*VDD
on the MCP23008, so it needs 3.5V on the SCL/SDA when 5V is applied to drive the LCD.

The MCP23008 and MCP23017 needs to be connected exactly the same way as the backpack.

For complete schematics see the adafruit page at:
https://learn.adafruit.com/i2c-spi-lcd-backpack/

4-bit operation. I2C only supported.

Pin mapping:

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
BL | D7 | D6 | D5 | D4 | E | RS | -

	Parameters:	
	address (int [https://docs.python.org/2.7/library/functions.html#int]) – The I2C address of your LCD.

	i2c_expander (string [https://docs.python.org/2.7/library/string.html#module-string]) – Set your I²C chip type. Supported: “PCF8574”, “MCP23008”, “MCP23017”.

	expander_params (dictionary) – Parameters for expanders, in a dictionary. Only needed for MCP23017
gpio_bank - This must be either A or B

If you have a HAT, A is usually marked 1 and B is 2

Example: expander_params={‘gpio_bank’: ‘A’}

	port (int [https://docs.python.org/2.7/library/functions.html#int]) – The I2C port number. Default: 1.

	cols (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of columns per row (usually 16 or 20). Default: 20.

	rows (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of display rows (usually 1, 2 or 4). Default: 4.

	dotsize (int [https://docs.python.org/2.7/library/functions.html#int]) – Some 1 line displays allow a font height of 10px.
Allowed: 8 or 10. Default: 8.

	charmap (str [https://docs.python.org/2.7/library/functions.html#str]) – The character map used. Depends on your LCD. This must
be either A00 or A02. Default: A02.

	auto_linebreaks (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Whether or not to automatically insert line breaks.
Default: True.

	backlight_enabled (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Whether the backlight is enabled initially. Default: True.

	
backlight_enabled

	Whether or not to enable the backlight. Either True or False.

	
clear()

	Overwrite display with blank characters and reset cursor position.

	
close(clear=False)

	

	
command(value)

	Send a raw command to the LCD.

	
cr()

	Write a carriage return (\r) character to the LCD.

	
create_char(location, bitmap)

	Create a new character.

The HD44780 supports up to 8 custom characters (location 0-7).

	Parameters:	
	location (int [https://docs.python.org/2.7/library/functions.html#int]) – The place in memory where the character is stored.
Values need to be integers between 0 and 7.

	bitmap (tuple of int) – The bitmap containing the character. This should be a
tuple of 8 numbers, each representing a 5 pixel row.

	Raises:	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – Raised when an invalid location is passed in or
when bitmap has an incorrect size.

Example:

>>> smiley = (
... 0b00000,
... 0b01010,
... 0b01010,
... 0b00000,
... 0b10001,
... 0b10001,
... 0b01110,
... 0b00000,
...)
>>> lcd.create_char(0, smiley)

	
crlf()

	Write a line feed and a carriage return (\r\n) character to the LCD.

	
cursor_mode

	How the cursor should behave (hide, line or blink).

	
cursor_pos

	The cursor position as a 2-tuple (row, col).

	
display_enabled

	Whether or not to display any characters.

	
home()

	Set cursor to initial position and reset any shifting.

	
lf()

	Write a line feed (\n) character to the LCD.

	
shift_display(amount)

	Shift the display. Use negative amounts to shift left and positive
amounts to shift right.

	
text_align_mode

	The text alignment (left or right).

	
write(value)

	Write a raw byte to the LCD.

	
write_shift_mode

	The shift mode when writing (cursor or display).

	
write_string(value)

	Write the specified unicode string to the display.

To control multiline behavior, use newline (\n) and carriage
return (\r) characters.

Lines that are too long automatically continue on next line, as long as
auto_linebreaks has not been disabled.

Make sure that you’re only passing unicode objects to this function.
The unicode string is then converted to the correct LCD encoding by
using the charmap specified at instantiation time.

If you’re dealing with bytestrings (the default string type in Python
2), convert it to a unicode object using the .decode(encoding)
method and the appropriate encoding. Example for UTF-8 encoded strings:

>>> bstring = 'Temperature: 30°C'
>>> bstring
'Temperature: 30Â°C'
>>> bstring.decode('utf-8')
u'Temperature: 30°C'

CharLCD (GPIO)

The main class for controlling GPIO (parallel) connected LCDs.

	
class RPLCD.gpio.CharLCD(numbering_mode=None, pin_rs=None, pin_rw=None, pin_e=None, pins_data=None, pin_backlight=None, backlight_mode='active_low', backlight_enabled=True, cols=20, rows=4, dotsize=8, charmap='A02', auto_linebreaks=True)

	Character LCD controller.

The default pin numbers are based on the BOARD numbering scheme (1-26).

You can save 1 pin by not using RW. Set pin_rw to None if you
want this.

	Parameters:	
	pin_rs (int [https://docs.python.org/2.7/library/functions.html#int]) – Pin for register select (RS). Default: 15.

	pin_rw (int [https://docs.python.org/2.7/library/functions.html#int]) – Pin for selecting read or write mode (R/W). Set this to
None for read only mode. Default: 18.

	pin_e (int [https://docs.python.org/2.7/library/functions.html#int]) – Pin to start data read or write (E). Default: 16.

	pins_data (list of int) – List of data bus pins in 8 bit mode (DB0-DB7) or in 4
bit mode (DB4-DB7) in ascending order. Default: [21, 22, 23, 24].

	pin_backlight (int [https://docs.python.org/2.7/library/functions.html#int]) – Pin for controlling backlight on/off. Set this to
None for no backlight control. Default: None.

	backlight_mode (str [https://docs.python.org/2.7/library/functions.html#str]) – Set this to either active_high or active_low
to configure the operating control for the backlight. Has no effect if
pin_backlight is None

	backlight_enabled (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Whether the backlight is enabled initially.
Default: True. Has no effect if pin_backlight is None

	numbering_mode (int [https://docs.python.org/2.7/library/functions.html#int]) – Which scheme to use for numbering of the GPIO pins,
either GPIO.BOARD or GPIO.BCM. Default: GPIO.BOARD (1-26).

	rows (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of display rows (usually 1, 2 or 4). Default: 4.

	cols (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of columns per row (usually 16 or 20). Default 20.

	dotsize (int [https://docs.python.org/2.7/library/functions.html#int]) – Some 1 line displays allow a font height of 10px.
Allowed: 8 or 10. Default: 8.

	charmap (str [https://docs.python.org/2.7/library/functions.html#str]) – The character map used. Depends on your LCD. This must
be either A00 or A02. Default: A02.

	auto_linebreaks (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Whether or not to automatically insert line
breaks. Default: True.

	
backlight_enabled

	Whether or not to turn on the backlight.

	
clear()

	Overwrite display with blank characters and reset cursor position.

	
close(clear=False)

	

	
command(value)

	Send a raw command to the LCD.

	
cr()

	Write a carriage return (\r) character to the LCD.

	
create_char(location, bitmap)

	Create a new character.

The HD44780 supports up to 8 custom characters (location 0-7).

	Parameters:	
	location (int [https://docs.python.org/2.7/library/functions.html#int]) – The place in memory where the character is stored.
Values need to be integers between 0 and 7.

	bitmap (tuple of int) – The bitmap containing the character. This should be a
tuple of 8 numbers, each representing a 5 pixel row.

	Raises:	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – Raised when an invalid location is passed in or
when bitmap has an incorrect size.

Example:

>>> smiley = (
... 0b00000,
... 0b01010,
... 0b01010,
... 0b00000,
... 0b10001,
... 0b10001,
... 0b01110,
... 0b00000,
...)
>>> lcd.create_char(0, smiley)

	
crlf()

	Write a line feed and a carriage return (\r\n) character to the LCD.

	
cursor_mode

	How the cursor should behave (hide, line or blink).

	
cursor_pos

	The cursor position as a 2-tuple (row, col).

	
display_enabled

	Whether or not to display any characters.

	
home()

	Set cursor to initial position and reset any shifting.

	
lf()

	Write a line feed (\n) character to the LCD.

	
shift_display(amount)

	Shift the display. Use negative amounts to shift left and positive
amounts to shift right.

	
text_align_mode

	The text alignment (left or right).

	
write(value)

	Write a raw byte to the LCD.

	
write_shift_mode

	The shift mode when writing (cursor or display).

	
write_string(value)

	Write the specified unicode string to the display.

To control multiline behavior, use newline (\n) and carriage
return (\r) characters.

Lines that are too long automatically continue on next line, as long as
auto_linebreaks has not been disabled.

Make sure that you’re only passing unicode objects to this function.
The unicode string is then converted to the correct LCD encoding by
using the charmap specified at instantiation time.

If you’re dealing with bytestrings (the default string type in Python
2), convert it to a unicode object using the .decode(encoding)
method and the appropriate encoding. Example for UTF-8 encoded strings:

>>> bstring = 'Temperature: 30°C'
>>> bstring
'Temperature: 30Â°C'
>>> bstring.decode('utf-8')
u'Temperature: 30°C'

Index

 B
 | C
 | D
 | H
 | L
 | S
 | T
 | W

B

 	
 	backlight_enabled (RPLCD.gpio.CharLCD attribute)

 	(RPLCD.i2c.CharLCD attribute)

C

 	
 	CharLCD (class in RPLCD.gpio)

 	(class in RPLCD.i2c)

 	clear() (RPLCD.gpio.CharLCD method)

 	(RPLCD.i2c.CharLCD method)

 	close() (RPLCD.gpio.CharLCD method)

 	(RPLCD.i2c.CharLCD method)

 	command() (RPLCD.gpio.CharLCD method)

 	(RPLCD.i2c.CharLCD method)

 	cr() (RPLCD.gpio.CharLCD method)

 	(RPLCD.i2c.CharLCD method)

 	
 	create_char() (RPLCD.gpio.CharLCD method)

 	(RPLCD.i2c.CharLCD method)

 	crlf() (RPLCD.gpio.CharLCD method)

 	(RPLCD.i2c.CharLCD method)

 	cursor_mode (RPLCD.gpio.CharLCD attribute)

 	(RPLCD.i2c.CharLCD attribute)

 	cursor_pos (RPLCD.gpio.CharLCD attribute)

 	(RPLCD.i2c.CharLCD attribute)

D

 	
 	display_enabled (RPLCD.gpio.CharLCD attribute)

 	(RPLCD.i2c.CharLCD attribute)

H

 	
 	home() (RPLCD.gpio.CharLCD method)

 	(RPLCD.i2c.CharLCD method)

L

 	
 	lf() (RPLCD.gpio.CharLCD method)

 	(RPLCD.i2c.CharLCD method)

S

 	
 	shift_display() (RPLCD.gpio.CharLCD method)

 	(RPLCD.i2c.CharLCD method)

T

 	
 	text_align_mode (RPLCD.gpio.CharLCD attribute)

 	(RPLCD.i2c.CharLCD attribute)

W

 	
 	write() (RPLCD.gpio.CharLCD method)

 	(RPLCD.i2c.CharLCD method)

 	write_shift_mode (RPLCD.gpio.CharLCD attribute)

 	(RPLCD.i2c.CharLCD attribute)

 	
 	write_string() (RPLCD.gpio.CharLCD method)

 	(RPLCD.i2c.CharLCD method)

 _static/i2c-lcd.jpg
TEEgEa :,;;m

_static/up.png

_static/plus.png

_static/comment-close.png

_static/file.png

_static/comment.png

_static/up-pressed.png

_images/photo.jpg

_images/wiring-gpio.png
(0JO)

®e

_images/i2c-lcd.jpg
TEEgEa :,;;m

_images/wiring-i2c.png
=S

101010J0JOJOJOXOXOXOXOXOXO)
(0J0]0]0J0J0J0J0Y0X0J0XOLO)]

_static/photo.jpg

nav.xhtml

 Table of Contents

 		Welcome to RPLCD's documentation!

 		Installation

 		From PyPI

 		Manual Installation

 		Getting Started

 		Wiring

 		Via I²C

 		Via GPIO

 		Initializing the LCD

 		Setup: I²C

 		Setup: GPIO

 		Writing Data

 		Usage

 		Writing To Display

 		Clearing the Display

 		Character Maps

 		Creating Custom Characters

 		Changing the Cursor Appearance

 		Backlight Control

 		I²C

 		GPIO

 		Automatic Line Breaks

 		Scrolling Text

 		Raw Commands

 		API

 		CharLCD (I²C)

 		CharLCD (GPIO)

_static/down.png

_static/minus.png

_static/comment-bright.png

_static/wiring-gpio.png
(0JO)

®e

_static/ajax-loader.gif

_static/wiring-i2c.png
=S

101010J0JOJOJOXOXOXOXOXOXO)
(0J0]0]0J0J0J0J0Y0X0J0XOLO)]

_static/down-pressed.png

